

Calculation Policy

	EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Combining two parts to make a whole: part whole model	Combining two parts to make a whole: part whole model	Combining two parts to make a whole: part whole model	Column method - exchanging	Column method - exchanging	Column method - exchanging up to 5 digit	Column method - exchanging including
Addition	Counting all to count on	Starting at the bigger numbers and counting on - using cubes Regrouping to make 10 using tens frame Using base 10	Adding three single digits Use of base 10 to combine two numbers Using place value counters/base 10 (up to 2 digits)	Using place value counters/base 10 (up to 3 digits)	(up to 4 digits)	numbers and 3dp	larger numbers and up to 3dp

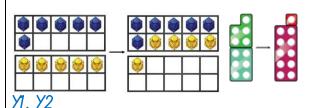
	Taking away	Taking away	Counting back	Column	Column	Column	Column
	ones	ones	Ŭ	method with	method with	method with	method with
			Find the	exchanging	exchanging.	exchanging	exchanging
	Counting back	Counting back	difference			for up to 5	including
	Ü	Ŭ		(up to 3 digits	(up to 4 digits)	digits and up	different
น		Find the	Part whole	using place	,	to 3dp	numbers of
tic		difference	model	value		,	decimal places
<u>'ac</u>				counters/base			,
Subtraction		Part whole	Make 10	10)			
Su		model					
			Use of base 10				
		Make 10 using					
		tens frame					

	Recognising	Recognising	Recognising	Arrays	Column	Column	Column
	and making	and making	and making	J	multiplication	multiplication	multiplication
	equal groups	equal groups	equal groups	2d × 1d using	- introduced	4 digit	of any
			, , ,	base 10/place	with place	multiplied by 1	numbers by up
	Repeated	Repeated	Repeated	value counters	value counters	or 2 digits	to 4 digit
	grouping	grouping and	grouping and				numbers
		addition	addition	Use of grid for	(2 and 3 digit		
	Doubling			2digit × 1 digit	multiplied by 1		
Ę		Doubling	Arrays -		digit)		
ıtic	Use cubes,		showing				
ico	Numicon and	Counting in	commutative				
Multiplication	other objects	multiples	representation				
ult	in the						
Š	classroom	Arrays					
		Use cubes,					
		Numicon and					
		other objects					
		in the					
		classroom					

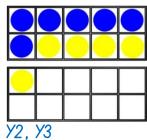
	Sharing	Sharing	Division as	Division with a	Division with a	Short division	Short division
	objects into	objects into	grouping	remainder -	remainder	with place	
	groups	groups		times table		value counters	Long division
	,		Division within	facts and	Short division	(up to 4 digits	
		Division as	arrays -	repeated	(up to 3 digits	by a 1 digits by	Children
		grouping e.g. 1	linking to	subtraction	by 1 digit -	1 digit	should
ح		have 12 sweets	multiplication		concrete and	including	exchange into
sίσ		and put them	,	2d divided by	pictorial)	remainders)	the tenths and
Division		into groups of	Repeated	1d using base	,		hundredths
Di		3, how many	subtraction	10 or place			column too
		groups?		value counters			
				and number			Children
				lines			should
							perform
							division using
							factors

Calculation Policy: Guidance

Calculation Policy: Addition


Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to', 'is the same as'.

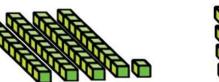
Concrete	Pictorial	Abstract
Combining two parts to make a whole (use	Children to represent the cubes using dots	4 + 3 = 7
other resources too e.g. eggs, shells,	or crosses. They could put each part on a	4 is a part, 3 is a part and the whole is 7.
teddy bears, cars)	EYFS, Y1, Y2	7 4 3 EYFS, Y1, Y2, Y3
Counting on using number lines using	A bar model which encourages the	The abstract number line:
cubes or Numicon.	children to count on, rather than count	What is 2 more than 4?
EYFS, Y1, Y2	all. 4 7 71, Y2	What is the sum of 2 and 4? What is the total of 4 and 2? 4 + 2 X1, Y2, Y3



Regrouping to make 10; using ten frames and counters/cubes or using Numicon 6 + 5

Children to draw the ten frame and counters/cubes.

Children to develop an understanding of equality. For example:

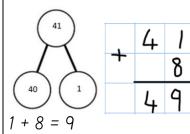

$$6 + 5 = 5 + \square$$

$$6 + 5 = \square + 4$$

*Y*2, *Y*3

TO + O using base 10. Continue to develop understanding of partitioning and place value.

41 + 8

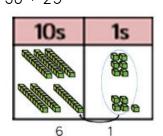


Children to represent the base 10 e.g. lines for tens and dots/crosses for ones.

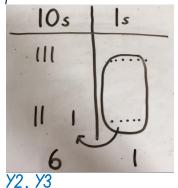
10s	Is
1111	
4	19

YI, Y2, Y3

41 + 8



40 + 9 = 49


У3

Y1, Y2, Y3

TO + TO using base 10 and exchanging. Continue to develop understanding of partitioning and place value. 36 + 25

Children to represent the base 10 in a place value chart.

Looking for ways to make 10.

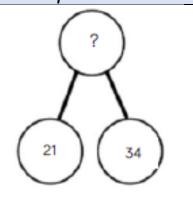
Formal method:

У3

Use of place value counters to add HTO + TO, HTO + HTO etc. When there are 10 ones in the 1s column - we exchange for 1 ten, when there are 10 tens in the 10s column — we exchange for 1 hundred.

100s	10s	1s
100 100	0000	000
•••		00
6	1	1

Children to represent the counters in a place value chart, crossing out when they make an exchange.


100s	10s	1s
00	0000	000
	9800	
6	1	1
100s	10s	Is
00	600	000
000	000	
6 74, 75	1	
• •		

243

+368 611

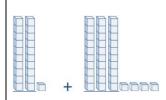
1 1 y4, y5, y6

Conceptual variation; different ways to ask children to solve 21 + 34

	?
21	34
74, 75, 76	

Word problems:

In Year 3, there are 21 children and in Year 4, there are 34 children. How many children in total?


21 + 34 = 55. Prove it.

Y4, Y5, Y6

$$\Box = 21 + 34$$

Calculate the sum of twentyone and thirty-four.

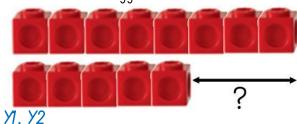
*Y*4, *Y*5, *Y*6

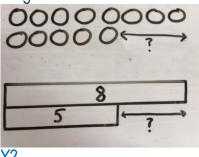
Missing digit problems:

10s	1s
10 10	0
10 10 10	?
?	5 -
74, 75, 76	

Calculation Policy: Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

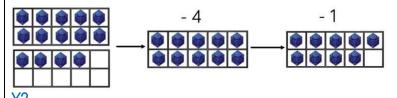

Concrete	Pictorial	Abstract
Physically taking away and removing objects from	Children to draw the concrete resources	4-3=
a whole (ten frames, Numicon, cubes and other	they are using and cross out the correct	
items such as beanbags could be used).	amount. The bar model can also be	□= 4 - 3
	used.	3 ?
EYFS, Y1, Y2	XXX	? (3)
	<i>Y</i> 1, <i>Y</i> 2	Y1, Y2, Y3, Y4
Counting back (using number lines or number	Children to represent what they see	Children to represent the calculation
tracks). Children start with 6 and count back 2.	pictorially e.g.	on a number line or a number track
6 - 2 = 4		and show their jumps. Encourage children to use an empty number
	12/2/1/5/6/2/8/9/10	line.
1 2 3 4 5 6 7 8 9 10	Y2	0 1 2 3 4 5 6 7 8 9 10
EYFS, Y1, Y2		H-1476-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
		<i>Y</i> 2, <i>Y</i> 3, <i>Y</i> 4



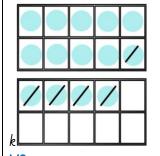
Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used).

Calculate the difference between $8\ \mathrm{and}\ 5.$

Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.

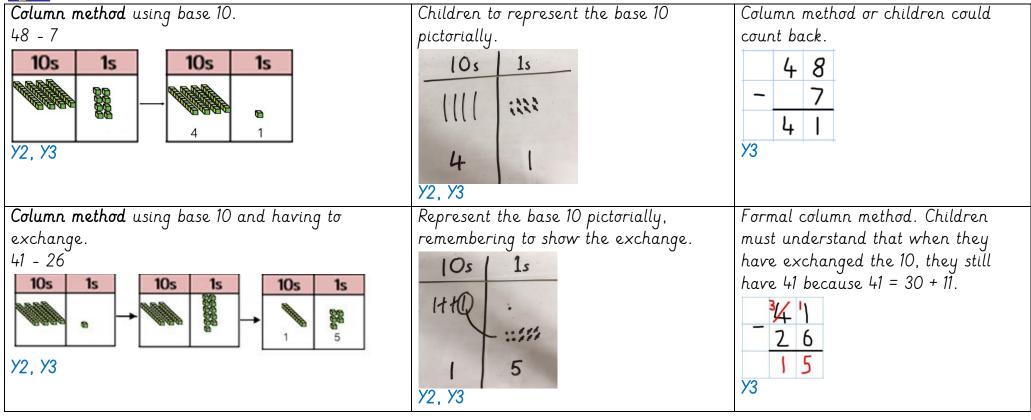


Find the difference between 8 and 5.

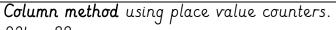

8 - 5, the difference is ☐ Children to explore why 9 - 6 = 8 - 5 = 7 - 4 have the same difference.

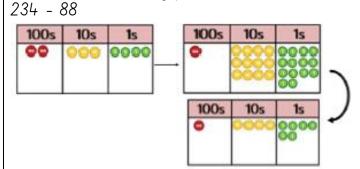
Making 10 using ten frames.

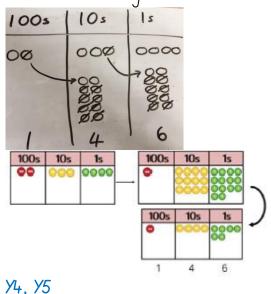
14 - 5

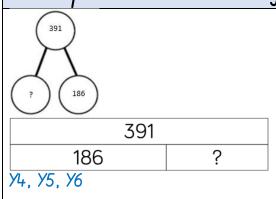

Children to present the ten frame pictorially and discuss what they did to make 10.

Children to show how they can make 10 by partitioning the subtrahend.









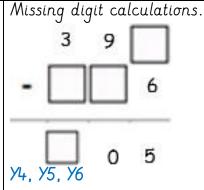
Represent the place value counters pictorially; remembering to show what has been exchanged.

Formal column method. Children must understand what has happened when they have crossed digits out.

Conceptual variation; different ways to ask children to solve 391 - 186

У3

Raj spent £391, Timmy spent £186. How much more did Raj spend?


Calculate the difference between 391 and 186.

 \Box = 391 - 186

391

<u>-186</u>

What is 186 less than 391? Y4, Y5, Y6

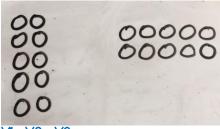
Calculation Policy: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition 3 × 4 4 + 4 + 4 There are 3 equal groups, with 4 in each group EYFS, Y1, Y2	Children to represent the practical resources in a picture and use a bar model. 88 88 88 71, 72	3 × 4 = 12 4 + 4 + 4 = 12 >1, >2
Number lines to show repeated groups. 3 × 4 Y2	Represent this pictorially alongside a number line e.g.	Abstract number line showing three jumps of four. 3 × 4 = 12

Use arrays to illustrate commutativity counters and other objects can also be used.

$$2 \times 5 = 5 \times 2$$

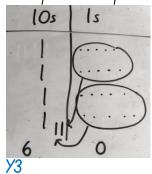


5 lots of 2

Children to represent the arrays pictorially.

Y1, Y2, Y3

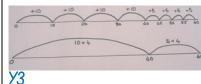
Children to be able to use an array to write a range of calculations e.g.


$$10 = 2 \times 5$$

$$5 \times 2 = 10$$

$$2 + 2 + 2 + 2 + 2 = 10$$

$$10 = 5 + 5$$


Children represent the concrete manipulatives pictorially.

Children to be encouraged to show the steps they have taken.

$$10 \times 4 = 40$$

 $5 \times 4 = 20$

A number line can also be used.

Formal column method with place value counters (base 10 can also be used). 3 x 23	Children to record what it is they are doing to show understanding. 3×23 $3 \times 20 = 60$ $3 \times 3 = 9$ $20 3 60 + 9 = 69$ 23 $\frac{\times 3}{69}$ $\frac{49}{4}$
Formal column method with place value counters. 6 × 23 100s 10s 1s 100s 10s 1s 100s 10s 1s	Formal written method. $6 \times 23 =$ 23 $\times 6$ 138 y_{4}, y_{5}, y_{6}

	1	2	4	
×		2	6	
	-, 7	4	4	
		_		
2	⁻ -4	8	0	
3	-4 2	2	4	

Answer: 3224

*Y*5, *Y*6

Conceptual variation; different ways to ask children to solve 6 x 23

23 23 23 23 23 23

?

Y5, *Y6*

Mai had to swim 23 lengths, 6 times a week.

How many lengths did she swim in one week?

*Y*4, *Y*5, *Y*6

Find the product of 6 and 23.

$$\Box = 6 \times 23$$

6 2

× 23 × 6

*y*4, *y*5, *y*6

Henleaze

Junior School

Calculation Policy: Division

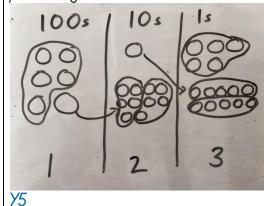
Key language: share, group, divide, divided by, half.

Concrete	Pictorial	Abstract
Sharing using a range of objects. 6 ÷ 2	Represent the sharing pictorially. Y1, Y2, Y3	6 ÷ 2 = 3 Solution 3 Children should also be encouraged to use their 2 times tables facts. Y2, Y3
Repeated subtraction using Cuisenaire rods above a ruler. 6 ÷ 2 -2 -2 -2 -2 3 groups of 2 72	Children to represent repeated subtraction pictorally.	Abstract number lune to represent the equal groups that have been subtracted. 3 groups 72 72 73 74 75 72 72 74 75 76 77 78 79 79 70 70 70 70 70 70 70 70

 $13 \div 4 = 3$ remainder 1 Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line. '3 groups of 4, with 1 left over' Children to represent the place value Sharing using place value counters. Children to be able to make sense of the place value counters and write $42 \div 3 = 14$ counters pictorally. 000000 000 ଉଷ୍ଟରର ଉଦ calculations to show the process. 8688 105 10s 1s 10s 1s 42 ÷ 3 0 42 = 30 + 120 0000 $30 \div 3 = 10$ 000000 $12 \div 3 = 4$ 10s 15 1s 10s 10 + 4 = 140000 = 140000 *y*3, *y*4 0000 *y*3

Short division using place value counters to group.

615 ÷ 5


	13
	00000
	00000
֡	2

1. Make 615 with place value counters

2. How many groups of 5 hundreds can you make with 6 hundred counters?

- 3. Exchange 1 hundred for 10 tens.
- 4. How many groups of 5 tens can you make with 11 ten counters?
- 5. Exchange 1 ten for 10 ones.
- 6. How many groups of 5 ones can you make with 15 ones?

Represent the place value counters pictorally.

Use of dienes to demonstrate short division.

*Y*6

Children to use the short division scaffold to complete the calculation.

*y*4, *y*5

Long division using place value counters

2544 ÷ 12

1000s	100s	10s	1s	
00	0000	0000	0000	We can't group 2 thousands into groups of 12 so will exchange them.
1000s	100s	10s	1s	We can group 24 hundreds into groups of 12 which leaves with 1 hundred.
1000s	100s	10s	1s	After exchanging the hundred, we have 14 tens. We can group 12 tens into a group of 12, which leaves 2 tens.
1000s	100s	10s	1s 00000	After exchanging the 2 tens, we 12 254 have 24 ones. We can group 24 ones 24 into 2 group of 12, which leaves no remainder. 14 12 2 2

Conceptual variation; different ways to ask children to solve $615 \div 5$

I have £615 and share it equally between 5 bank accounts. How much will be in each account?

615 pupils need to be put into 5 groups. How many will be in each group?

Y5, Y6

5 615

$$\Box = 615 \div 5$$
 y5, y6

